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Painlevé Analysis for a Nonlinear
Schrodinger Equation in Three Dimensions
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A Painlevé analysis is performed for the nonlinear Schrodinger equation in
(2+1) dimensions following the methodology of Weiss et al. simplified in the
sense of Kruskal. At least for one branch it is found that the required number
of arbitrary functions (as demanded by the Cauchy-Kovalevskaya theorem)
exists, signalling complete integrability.

1. INTRODUCTION

The question of the integrability of nonlinear partial differential
equations has gained a tremendous boost in the last decade due to the
relationship that exists between the chaotic behavior of some systems and
nonintegrability (Ramai et al, 1986). Of late various classes of equations
have been analyzed on the basis of the Painlevé test (Weiss et al, 1983;
Weiss, 1983, 1984a,b). Although the Painlevé test is not a necessary and
sufficient condition for integrability of a p.d.e., it has worked in many known
and important situations. Here we report one such analysis for the nonlinear
Schrodinger equation (NLSE) two space (+ one time) dimensions
(Mukherjee and Roy Chowdhury, 1985). The only other equation in (2+1)
dimensions whose Painlevé analysis has been done is the KP equation
(Chudnovsky et al, 1983). It is found that the 2D NLSE is completely
integrable in the sense of the Painlevé test, satisfying all the requirements
of the Cauchy-Kovalevskaya theorem.

The 2D NLSE is written as

D= Apxx —pry+(r—s)p
q:= quy _Aqxx+(s—r)q
r=2B(pg),

5, =2A(pq)x
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2. LEADING ORDER ANALYSIS
To estimate the leading singularity we assume
P~Pod”s g~ dod”s  r~rd?;  s~s0¢” (2)

where ¢ =x—f(y, t) and ( py, 9o, o, So) are all functions of (y, ¢). This form
of assumption was used by Jimbo et al. (1982) and Goldstein and Infeld
(1984), and was initially suggested by M. Kruskal (private communication),
whereas, according to the original prescription of Weiss et al. (1983), ¢ is
a general function of (x, y, t). If we substitute (2) in (1) and consider that
these exponents will be all negative integers, then we get a =—1, B =—1,
v=-2, 8§ =2, whereas the leading equations are

Do — C¥1’0<75w1 '
= Apoa(a—1)¢* > — Bpo,,¢* +2Bpo,ad®'f,
— Bpoar(a — 1) 7°f}+ Bpoad™ ' f,, + 10pod™™ Y ~sopod™™  (3a)
q0r¢ﬁ - qu¢3—1 t‘
= Bqo,y¢” —2Bgo,Bé"'f,+ BgoB(B—1)$"°f;

= BqoB” 'S, — AqoB(B— 106" 2+ gosed” " qored” T (3b)
roy$” " =2B(podo),¢*"F —2B(pogo) (e +B) " F S, (3¢)
Soy®” = 508¢° 7' f, = 2A(Ppogo)(a + B)* TP (3d)

Most singular terms, when equated leads to
Podo=—f,,  re=2Bf,,  s,=2A : (4)

so that one of { po, qo) is arbitrary. Note that we may have other possibilities
for the exponents (a, 8, v, 5), for example, § =y=—1, but a + 5 =—1. But
in these cases the leading equations are almost decoupled:

Apxx - pry = Oa quy - Aqxx = 0, e = 2B(P¢1)y, 8, = 2A(pq)x
(5)

Since all the exponents are nonnegative integers (as o+ =—1) and the
leading equations are decoupled, we do not consider these cases.

Another possibility is § =2, y=-2, a+8=-2, a# -1, #—-1. In
this case we may have several fractional values of (o, 8) so that a + 8 = —2.
But in these cases the basic assumption of a moving pole structure is violated.
Some authors speak of such situations as having the weak Painlevé property.
In this case also we get completely decoupled leading order equations.
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Under the above circumstances we proceed to search for the resonance
positions only in the first case.

2. RESONANCE POSITIONS

To obtain the system matrix giving yhe resonance positions, we now set

p=Ypd  q=Y g¢'!
j=0 j=0

. o (6)
r=3nd s= T g
=0 j=0
Equating coefficients of ¢™ >, we get
A(m—1)(m=2)+r,— s 0 Po —Po
~ B(m—1)(m-2)f
0 ~A(m-1)(m—-2)—ry+s, —qo 9o
+B(m—1)(m—-2)f>
2Bf,qo(m —2) 2Bf,py(m—2) m—2 0
2Aq,(m—2) 2Ap(m—2) 0 (m-=-2)f,
Pm X
G Y
m—1 m—1
X tm = 2B 20 (pM#n—lqn)y __2ny Z_:l Pm—nqn(m _2) (7)
m-—1
Sm &%Ly_zA Elpmﬂﬂnhn—z)
where the expressions X and Y are given as
X :pm—Z,t _pm—l(m - 2)f; + Bp(m—2)yy - 2Bp(m-l)y
m-—1 m-—1
X (m _2)f;: - Bpm—l(m _z)f:vy + Z Fm—nPn — 2 Sm—nPns
n=} n=1
(8)

Y= Im-—2t — qm—t(m —Z)f; - qu—Zyy +2qu—1y(m —2)f;;
m-—1 m—1
+qu—l(m_2).f:vy~ Z sm—nqn+ Z Fr—nn
n=1 n=1

Resonance positions are those values at m = r for which the determinant

of the system matrix [occurring on the left-hand side of (7)] vanishes. It is
found that

det[-]=(m+1)m(m—2)’(m—3)(m—4)
so that we get resonances at

r=-1,0,2,2,3,4 9)
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3. COEFFICIENTS OF EXPANSION AT THE
RESONANCE POSITION

Case a. r=—1. This corresponds to the arbitrariness of
¢=x~f(y, 1) (10a)

Case b. r=0. This represents the arbitrariness of p, or g, [see equation

(4]
Case c. r=1. We get from (7)

1
(—Bpof,y + dof: +2Bpo,f,)
ro— So

1 (10b)
(“B‘Iofyy —qgofi + 2qufy)
ro - SO

r =2Bf,, 5:=0 .
Case d. r=+2 (double resonance). In this case

P =

9=

1
pP.= . [_Po(rz_52)+P0t+BP0yy_"131]

0~ So

(11)

9= [_qo(’z_sz)_%x"‘quw“"151]

0~ So
r,=gs, arbitrary
subject to the compatibility condition
(Poq:t P190), =0, 51, =0
which are obtained from the third and fourth rows of (7). But it is not
difficult to verify that these conditions are identically satisfied by those

obtained in equations (4), (10a), and (10b).
Case e. r=3. Here we get

rs=2B(p:q0+ P11y +P0‘12)y “2ny(P3‘IO+P2‘]1 +p1g>+ poqs)

1 .
53 Z:f—[szy —2A(p3q0+ p>q, +pig2+ pogqs)]

y

(dops + Pods) =—2 {—i<ro—so)(pzq1+qul) (12)

ro—So fy

hY
+2B(p2go+ p1g1+ Podo), ——2

y

1
_;[plr _P2.f;+BP1yy—2Bp2yf:v
0

—Bpyfyy 5291 — g — rlpz]}
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Therefore one of p;, g; can be assumed to be arbitrary, subject to the
following compatibility condition:

2B¢( poqzy — GoP2) +3Bf,,(Poq2— o P2)
—{(Pog2t qop2)f, + (PoG1 — Gop1) (12— 52) +(Gop1: F Pogir) (13)

+ B(gop1yy — Podiyy) + 51(Gop2— Poga) =0

But by substituting the values of (po, go), (P2, 42), €tc., it can be seen that
(13) is identically satisfied.

Case f. r=4. At the last resonance position the recurrence relation
leads to

ts=3—4Bf,(qoPa+t Pogs) +2B(psgo+ p2gs + P12+ Pods)y

—4Bf,(p:q,+ P92+ p1g5)]

1
5= i[_4A(‘I0P4+P0‘I4) + 53, —4A(qspr+ P2g2t P3qi}]
s .

1 (14)
(0P = poga) =+ ———{£[B(p3dot P01 + P1a:2+ doPp3),
0 0

—2Bf(p3q: t 292t P1g5)]
- [%Ssy —2A(psq1+ p2g>+ p1g3) 1}

subject to a compatibility condition that comes from the right-hand side of
the recursion relation (7). The said condition is

(PoGc = GoP20) = 2(Poqs — Gop3)f: = B(Podayy + GoPayy)
+4B(pogsy + Gopsy)f, +2B(qops+ pogs)f,y + r3(podi + p14o)
+r2(Podzt gop2) + 1i(Pogs+ p3go) — 53(Pods + go 1)
—~52(Pog2t P2g0) — 51 Poqs+ qop3) — 2{f,[B(ps90+ p-q1
+P192t Poqa)y, — 2Bf,(p3gi + p2g>+ p1gs)]
~[3s3, —2A(p3g:+ p2g>+ p1g3)1} =0 (15)

It is really amusing to note that such a complicated-looking equation is
also identically satisfied by the coefficients determined previously.
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4. CONCLUSION

The above analysis shows that our equation has six resonances at r=—1,
0, 2, 2, 3, 4 and we can have six arbitrary coefficients at these resonances
positions [including ¢(x, y, 1) = x —f(y, £}]. So the Cauchy-Kovalevskaya
theorem immediately suggests that our equation does conform to the
Painlevé criterion of complete integrability.

At this point it might not be out of place to note our Painlevé analysis
cannot be used to deduce the Lax pair because as, in the case of a coupled
system, there is still no concrete method to deduce the Lax pair for coupled
nonlinear equations.
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